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Fig. 1. We present a method that adds geometric details to an input (coarse) 3D mesh through text guidance. Our method can be applied to different types of
input conditions. From left to right, the input mesh is an assembly of six primitive shapes, a low-poly mesh, another low-poly mesh, and a mesh initialized by
silhouette carving [Kutulakos and Seitz 2000].

We propose a novel technique for adding geometric details to an input coarse
3D mesh guided by a text prompt. Our method is composed of three stages.
First, we generate a single-view RGB image conditioned on the input coarse
geometry and the input text prompt. This single-view image generation step
allows the user to pre-visualize the result and offers stronger conditioning
for subsequent multi-view generation. Second, we use our novel multi-view
normal generation architecture to jointly generate six different views of the
normal images. The joint view generation reduces inconsistencies and leads
to sharper details. Third, we optimize our mesh with respect to all views and
generate a fine, detailed geometry as output. The resulting method produces
an output within seconds and offers explicit user control over the coarse
structure, pose, and desired details of the resulting 3D mesh. Project page:
https://text-mesh-refinement.github.io

1 INTRODUCTION
We consider the problem of adding geometric details to 3D object
meshes through text guidance. Text-to-3D generative modeling has
been successfully applied to computer vision [Poole et al. 2023], com-
puter graphics [Khalid et al. 2022] and geometry processing [Gao
et al. 2023] applications. These methods focus on generating a 3D
mesh directly from text [Poole et al. 2023; Wang et al. 2023] without
providing users with the ability to control the coarse structure of the

output shape, limiting their practical usefulness for artists who need
careful control over the generation process. Other methods focus
on generating textures for 3D meshes [Richardson et al. 2023], but
they do not perform any changes in the geometry. While there are
some approaches [Gao et al. 2023; Metzer et al. 2023] that provide
control to users and are able to modify the geometry of a given
shape, these methods are generally slow since they rely on costly
score distillation sampling [Poole et al. 2023].

In this paper, we present a method that creates 3D object meshes
with rich geometric details while allowing users to retain control
over both the global shape structure (via an input coarse mesh) and
the local geometric details (via an input text prompt). Following the
recent success of text-guided generative methods [Metzer et al. 2023;
Poole et al. 2023; Richardson et al. 2023; Wang et al. 2023], we build
our method on large pre-trained text-to-image models [Rombach
et al. 2022] and use language to guide the generation of geometric
details. Our formulation does not require paired coarse-geometry
and fine-geometry training data but instead uses large pre-trained
text-to-image models as supervision to guide the process of adding
geometric details through a differentiable renderer. Our key insight
stems from the fact that models trained to perform text-to-image

https://text-mesh-refinement.github.io
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generation guided by depth information [Mou et al. 2024; Zhang et al.
2023] end up creating images that contain additional geometric cues.
As we can see in Figure 2, those cues are so prominent that even
off-the-shelf normal estimation models can extract them; i.e., even
though the mouse image was generated from just three spheres, its
normal estimation (rightmost image) shows normals corresponding
to a surface that depicts eyes, a nose and ears. However, this process
is only capable of creating details visible from a single viewpoint
whereas we want to add details to the whole visible surface of a
given shape.
Our method adds geometric details to an input mesh in three

stages. The first stage generates a single-view RGB image based on
the input text prompt and the input coarse mesh. This RGB image
can be seen as a preview of how the geometric details that will be
added to the input mesh look like. The second stage performs multi-
view generation based on the single-view output from the first stage
and the input coarse mesh. The third stage refines the geometric
details of the input mesh based on the multi-view generation in the
second stage. Since the output of each stage is non-abstract, human-
understandable images or renderings, this property allows early
moments before finish for users to decide to change parameters
or go back and change/modify inputs. In addition, the first two
stages only involve running inferences of pre-trained networks and
the final stage operates directly on meshes. Each stage can be done
within seconds, therefore allowing our method to be used to support
interactive 3D modeling applications. As shown in Figure 1, our
method can be used to add geometric details to objects assembled by
primitive shapes, to low-poly meshes, and to meshes created from
silhouette carving [Kutulakos and Seitz 2000].

We compare our method with text-to-3D methods that allow for
utilizing an input shape as guidance, i.e., Latent-NeRF [Metzer et al.
2023], Fantasia3D [Chen et al. 2023a] and Magic3D [Lin et al. 2023].
Extensive experimental results show that our method produces
shapes that have better geometric details and visual quality based
on subjective human evaluations. Our results are also more con-
sistent with input text conditions based on both subjective human
evaluations and the objective CLIP [Radford et al. 2021] similarity
metric. At the same time, our method runs at least 90× faster than
the competing methods.

2 RELATED WORK
Our work aims to generate shapes with rich geometric details from
given coarse shapes while utilizing text prompts to guide the ap-
pearance of the generated details. Therefore, our work is closely
related to methods that generate geometric details and text-to-3D
generative methods. For text-to-3D methods, we focus on methods
that utilize large pre-trained text-to-image diffusion models, which
mainly include methods that adopt score distillation sampling (SDS)
and methods based on multi-view image generation.

Geometric detail generation. With the polygon mesh representa-
tion, geometric details are typically generated on a coarse shape
via transferring displacement maps or geometric texture patches
from detailed shapes [Berkiten et al. 2017; Hertz et al. 2020; Zhou
et al. 2006]. In addition, mesh subdivision powered by neural net-
works can transfer geometric details by learning to reconstruct local

Input 3D mesh Depth rendering RGB image Normal image

Rendering Diffusion Prediction

Fig. 2. Insight. Using a depth/normal image as a control mechanism in
large text-to-image models usually leads to images that contain more details
than the ones present in the original shape. Those details are so prominent
that can even be captured by off-the-shelf shape estimation models.

details from training examples [Chen et al. 2023c; Liu et al. 2020].
On the other hand, methods with voxel or other grid-structured
representations are able to generate geometric details by replicating
local patches from reference shapes [Chen et al. 2023b, 2021; Shen
et al. 2021] via patch-wise generative adversarial networks [Isola
et al. 2017]. These methods typically require detailed 3D shapes as
geometric style references, which limits their capability when 3D
shapes are scarce. The progression on mesh-based differentiable
rendering also enabled surface detail synthesis conditioned on the
style of a reference image [Liu et al. 2018] or input text [Gao et al.
2023; Michel et al. 2022]. However, these methods are slow due to
per-shape optimization supervised by image diffusion models [Gao
et al. 2023; Michel et al. 2022].

Text-to-3D with SDS. The recent progress in text-to-image gen-
erative modeling has enabled a line of research works making use
of large pre-trained text-to-image diffusion models to guide 3D
generation through SDS, pioneered by DreamFusion [Poole et al.
2023] that optimizes a neural radiance field (NeRF) [Mildenhall et al.
2021] for text-to-3D generation. Several follow-up works explored
optimizing NeRFs [Metzer et al. 2023; Tang et al. 2023b] and other
representations with SDS, such as neural SDF [Tsalicoglou et al.
2024], meshes [Chen et al. 2023a], 3D Gaussian Splatting [Tang et al.
2023a], and hybrid representations [Lin et al. 2023; Qian et al. 2024].
Optimization-based methods re-train a model for each new text
prompt, therefore suffering from a long inference time. Recent work
addressed this issue by training a feed-forward model while using
SDS to supervise the training [Lorraine et al. 2023].

Text-to-3D with multi-view images. Another line of works fine-
tuned image diffusion models on large 3D object datasets, such as
Objaverse [Deitke et al. 2023], to arrive at diffusion models capable
of generating multiple images of the same 3D object viewed from
different viewpoints. Such methods can produce multi-view images
from a text prompt or a single-view image that could be generated
by a text-to-image model. A 3D shape can then be reconstructed
from the multi-view images, either via optimizing a 3D shape with
differentiable rendering [Liu et al. 2023a, 2024a; Long et al. 2024;
Shi et al. 2023, 2024], or via a feed-forward 3D shape reconstruction
network [Hong et al. 2023; Li et al. 2023; Liu et al. 2024b, 2023b].

Although prior text-to-3D methods are expressive in the final 3D
generations, most of these methods lack any control mechanism
besides the input text. The unconstrained nature of these meth-
ods makes it difficult for 3D artists to incorporate them into their
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Fig. 3. Method overview. Our method consists of three stages: single-view generation, multi-view generation and mesh refinement/optimization. Given an
input mesh and an input text prompt, we first use a large-scale pre-trained diffusion model (highlighted in red) to generate an RGB image that respects the
input conditions. Next, we use a multi-view diffusion model (highlighted in blue) that takes as input the generated RGB image and the normal renderings of
the input mesh and generates multi-view normals. Finally, we use the generated multi-view normals to supervise the refinement of the input mesh.

modeling process, which usually relies on fine-grained modifica-
tions. Methods that allow a single-view image as an input could
provide controllability to the 3D generative process to some extent.
However, a single image is often ambiguous and lacks the ability to
provide sufficient information to guide the generation of the desired
structure. Some optimization-based text-to-3D methods [Chen et al.
2023a; Metzer et al. 2023] allow having a coarse 3D shape to be the
starting point of their generative procedure, therefore achieving
generation with shape guidance. Yet they either produce poor geom-
etry, as shown in Figure 5 (b) and (d), or deviate from the structure
of the input coarse shape, as in Figure 5 (c). In addition, all meth-
ods take at least half an hour and up to several hours to generate
an output due to their optimization-based nature. In contrast, we
devise a multi-view ControlNet [Zhang et al. 2023] conditioned on
multi-view normal renderings of the coarse input shape, to provide
global structure guidance. Since our work does not rely on iterative
optimization with image diffusion models, but instead relies on fast
multi-view 3D reconstruction techniques [Palfinger 2022], we are
able to achieve significantly faster inference speed.

3 METHOD
Our method consists of three main stages: single-view RGB genera-
tion (Section 3.1), multi-view normal generation (Section 3.2), and
mesh refinement and optimization (Section 3.3). Figure 3 shows the
overview of our method.
Given a coarse triangle mesh 𝑀coarse = (𝑉coarse, 𝐹coarse) with

vertex positions 𝑉coarse and faces 𝐹coarse and a text prompt 𝑃 as
input, our goal is to use large pre-trained text-to-image models to
generate images that have rich details and use them to refine the
coarse mesh to create a triangle mesh𝑀fine = (𝑉fine, 𝐹fine) that has
additional geometric details as output. Throughout this procedure,
our method will rely on a rendering operator R that, given a mesh

𝑀 and a viewpoint 𝜃 , yields a depth image R𝑑 [𝑀,𝜃 ] and a nor-
mal image R𝑛 [𝑀,𝜃 ]. We will also use the generative operators G
that, given a control image 𝐼 and a text prompt 𝑃 , output a new
image G[𝐼 , 𝑃] that follows both 𝐼 ’s structure and 𝑃 ’s description. In
practice, those operators correspond to deep generative models like
ControlNet [Zhang et al. 2023] and T2I-Adapters [Mou et al. 2024].

3.1 Single-View RGB Generation
The goal of the first stage of our approach is to generate an RGB
image that will act as a guide for the rest of the mesh refinement
process. This is necessary for two reasons. First, this image can be
generated using large-scale text-to-image models that are general
enough to work with various prompts and types of objects while
still being capable of creating detailed imagery. Second, this initial
procedure can act as a fast preview of the whole process – the
user can quickly verify (in ∼3 seconds) if the image corresponds
to the appearance they intend before continuing with the rest of
the pipeline. The process starts by the user providing a starting
viewpoint 𝜃𝑠 , an initial mesh𝑀coarse and the text prompt 𝑃 . We use
a standard depth-to-RGB ControlNet model G𝑑 to create a color
image 𝐼𝑠 that will be used in the rest of the process:

𝐼𝑠 = G𝑑
[
R𝑑 [𝑀coarse, 𝜃𝑠 ], 𝑃

]
. (1)

An important feature of using G𝑑 to create 𝐼𝑠 is that its generative
process happens through a number of backward diffusion steps,
i.e., iteratively denoising an image whose pixels are sampled from
N(0, 1). Thus, we can allow the user to control howmuch 𝐼𝑠 deviates
from R𝑑 [𝑀coarse, 𝜃𝑠 ] by disabling the depth guidance in the later
iterations of the denoising procedure.We refer readers to Zhang et al.
[2023] for further details about the model architecture and how the
amount of guidance can be set by the user. In Section 4.2 we discuss
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the effects of applying different levels of guidance throughout the
single-view and multi-view generation stages.
After this process is complete, we have an RGB image 𝐼𝑠 that

roughly follows the structure given by 𝑀coarse when seen from
𝜃𝑠 while depicting the description 𝑃 . Unfortunately, 𝐼𝑠 is generated
based on a single-view depth rendering of the input mesh and has no
information about what the mesh we are trying to refine looks like
from viewpoints other than 𝜃𝑠 . One could use other methods that
generate multi-view consistent images from a single input image
(e.g., MVDream [Shi et al. 2024] and Wonder3D [Long et al. 2024]),
but they would not follow 𝑀coarse – only what it looks like when
seen from 𝜃𝑠 . Examples of this behavior are depicted in Figure 6 and
Figure 11. While Wonder3D and other image-to-3D methods are
capable of generating reasonable shapes, they fail to adhere to any
shape guidance not depicted in the input image. We address this
issue by designing a multi-view ControlNet architecture detailed in
the following subsection.

3.2 Multi-view Normal Generation
Until this point, we only used guidance from the initial viewpoint 𝜃𝑠 .
Now,we define a set of viewpointsΘ = {𝑅𝑦 (𝛼) |𝛼 ∈ {0, 𝜋4 ,

𝜋
2 , 𝜋,

3𝜋
2 , 7𝜋4 }}

where 𝑅𝑦 (𝛼) corresponds to the viewpoint obtained by rotating the
object 𝛼 degrees along the upward axis from the starting viewpoint
𝜃𝑠 . We propose a multi-view ControlNet Gmv that learns to generate
multi-view consistent normal images {𝐼𝑛,𝜃 }𝜃 ∈Θ conditioned on the
single-view RGB image 𝐼𝑠 and on |Θ| multi-view normal renderings
{R𝑛 [𝑀coarse, 𝜃 ]}𝜃 ∈Θ of the input mesh𝑀coarse. More precisely, we
have

𝐼𝑛,𝜃 = Gmv
𝑛,𝜃

[
{R𝑛 [𝑀coarse, 𝜃 ]}𝜃 ∈Θ, 𝐼𝑠

]
, (2)

where Gmv
𝑛,𝜃

yields normal images of the object seen from 𝜃 . Thanks
to the additional information present in 𝐼𝑠 and the way Gmv is
trained, the normal images 𝐼𝑛,𝜃 generated by our multi-view Con-
trolNet preserve the coarse structure of 𝑀coarse while containing
details following the description 𝑃 . We build our Gmv on top of a
Wonder3D [Long et al. 2024] networkWmv that is trained to gen-
erate multi-view consistent RGB and normal images given a single-
view RGB image. We take inspiration from ControlNet [Zhang et al.
2023] and design a control model Cmv that can be plugged intoWmv

to allow multi-view control in the existent multi-view generation
network.

Network details. Wmv builds on pre-trained 2D Stable Diffu-
sion [Rombach et al. 2022] and enables multi-view RGB and normal
generation from a single-view RGB image. The network takes as
input a single-view RGB image and a camera pose, and outputs
an RGB image and a normal image of the object depicted in the
input image from the given camera pose. We refer readers to Long
et al. [2024] for details about Wonder3D. Our model Gmv consists
of three components: the original (frozen) Wmv, a trainable Cmv

copy ofWmv, and a normal encoder, which takes as input the set
{R𝑛 [𝑀coarse, 𝜃 ]}𝜃 ∈Θ. Specifically, Cmv’s encoder takes as input the
output of the normal encoder and outputs features that are then inte-
grated intoWmv’s decoder’s skip connections using zero-initialized
convolutions. We follow the same training procedure as Wonder3D
to train the normal encoder and Cmv.

Input shape 0% 50% 75% 100%

Front view

Side view

Multi-view guidance strength

Single -view guidance strength
0% 50% 75% 100%

Depth

Fig. 4. Influence of guidance strength. The user can control how much
detail can be generated by the system when setting the number of backward
diffusion steps where the guidance will be used. This control is available
during the single-view (top) and multi-view (bottom) stages.

Training data. To train our multi-view ControlNet, we generate
training data using the LVIS subset of the Objaverse [Deitke et al.
2023] dataset, which consists of around 32,000 objects. For each
object, we use Blenderproc [Denninger et al. 2023] to render RGB
images and normal images from 6 views, i.e., the front, left, right,
back, front-left and front-right views. To encourage our multi-view
ControlNet to learn to generate more details in the multi-view nor-
mal predictions, for every input normal image we apply a Gaussian
filter with a kernel size of 7. The goal of this blurring step is to ensure
that the model is only aware of the coarse structure of the shape
and not its specific details. To train our multi-view ControlNet, we
use the blurred normal image as input to the normal encoder and
train the network to predict the unblurred (clear) normal image.
This mechanism allows the model to learn to generate additional
geometric details while following the coarse structure of the blurred
normals. This blurring operation is also applied at inference time.

Implementation details. We implement our network in PyTorch.
The normal encoder consists of 5 convolutional layers. The first
four convolution layers are randomly initialized, each of which is
followed by a SiLU [Elfwing et al. 2018] activation. The last convo-
lution layer is zero-initialized. The image resolution used to train
the network is 256 × 256. We use a batch size of 192 and train the
network for 20,000 steps. We use 4 NVIDIA A100 GPUs to train the
network. The network training takes around 4 days.

3.3 Mesh Refinement and Optimization
Given the multi-view images generated by our multi-view Control-
Net, there are multiple ways to reconstruct a 3D mesh from them.
For instance, one can use multi-view images to fit a NeRF [Milden-
hall et al. 2021; Müller et al. 2022] or a neural SDF [Wang et al.
2021]. However, computing these representations through gradient-
based optimization takes a lot of time and, after the procedure is
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Fig. 5. Qualitative results. Our method generates 3D meshes that have better geometric details and visual quality compared to state-of-the-art methods.

complete, one would still need to convert them into meshes. For
our application, we cast mesh refinement directly as a mesh opti-
mization problem. To make the mesh optimization pipeline fully
differentiable, we use a differentiable rasterizer, nvdiffrast [Laine
et al. 2020], that allows us to quickly optimize the coarse mesh
𝑀coarse to follow the set of normal images {𝐼𝑛,𝜃 }𝜃 ∈Θ.

We will optimize the mesh𝑀 initialized as𝑀 = 𝑀coarse and refine
its geometry based on {𝐼𝑛,𝜃 } through gradient descent. For each
iteration, we optimize the mesh vertices to minimize an objective
function L with three components:

L = Ln + L∇𝑛 + Lsil . (3)

For simplicity, wewill slightly abuse the notation and define ∥𝑎 − 𝑏∥1
as the sum of the absolute differences between all the pixels in image
𝑎 and image 𝑏. Thus, Ln is the ℓ1 loss between the normal rendering
of the mesh and the normal generated by Gmv:

Ln =
1
|Θ|

∑︁
𝜃 ∈Θ

R𝑛 [𝑀,𝜃 ] − 𝐼𝑛,𝜃

1 . (4)

L∇𝑛 is the ℓ1 loss between the image gradient of the normal ren-
dering of the mesh and the image gradient of the target normal:

L∇𝑛 =
1
|Θ|

∑︁
𝜃 ∈Θ

 𝜕R𝑛 [𝑀,𝜃 ]
𝜕𝑥

−
𝜕𝐼𝑛,𝜃

𝜕𝑥


1
+
 𝜕R𝑛 [𝑀,𝜃 ]

𝜕𝑦
−

𝜕𝐼𝑛,𝜃

𝜕𝑦


1
.

(5)
We found experimentally that L∇𝑛 is a crucial component for

capturing the higher frequency details present in the generated
normal images. See Figure 7 for an example comparing the mesh
optimization procedure with and without this component. Lsil is
the ℓ1 loss between the silhouette rendering R𝑠 of the mesh and the
foreground segmentation mask S[𝐼rgb,𝜃 ] predicted from the RGB
image 𝐼rgb,𝜃 (generated by Gmv) using Segment Anything [Kirillov
et al. 2023]:

Lsil =
1
|Θ|

∑︁
𝜃 ∈Θ

R𝑠 [𝑀,𝜃 ] − S[𝐼rgb,𝜃 ]

1
. (6)

After each optimization iteration, we follow continuous remesh-
ing [Palfinger 2022] to adaptively remesh the mesh𝑀 .

Implementation details. We implement our mesh optimization
algorithm in PyTorch. We run mesh optimization for 2,000 iterations.
The mesh optimization process takes around 20 seconds on one
single NVIDIA 3080Ti GPU.
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Table 1. Quantitative results. Our method achieves the best results on
CLIP similarity while being approximately two orders of magnitude faster.

Method CLIP similarity ↑ Run time (sec) ↓

Magic3D 0.2327 5597
Latent-NeRF 0.2367 3697
Fantasia3D 0.2556 2971
Ours 0.2666 32

4 EXPERIMENTS
In this section, we analyze the capabilities of our method and in-
vestigate how modifying various components impacts its overall
performance. We start by presenting a quantitative and qualitative
comparisonwith the current state-of-the-art in the text-guidedmesh
refinement task. Then, we show how the user can apply different
guidance levels to trade off between detail generation and original
shape preservation. Finally, we present a few additional results and
applications.

4.1 Text-guided Mesh Refinement
Baseline methods. We choose Latent-NeRF [Metzer et al. 2023],

Magic3D [Lin et al. 2023] and Fantasia3D [Chen et al. 2023a] as the
competing methods. Latent-NeRF introduces global shape guidance
through a sketch shape and a loss between the underlying NeRF’s
occupancy value and the winding number to the sketch shape’s sur-
face. We use their official implementation and their default setting
to generate results for comparison with our method. Fantasia3D has
their shape-guided 3D generation procedure implemented by initial-
izing their initial SDF representation with an input shape. However,
they don’t enforce any control mechanism during the generation. As
a result, their generation can diverge from the input shape’s outline.
Magic3D introduced a two-stage method for text-to-3D generation.
Their second stage refines the coarse shape generated from the first
stage via direct mesh optimization with differentiable rendering
and it is therefore comparable to our method. For a fair comparison,
we remove the first stage and initialize the Magic3D’s second stage
geometry with the guidance shape in a randomly initialized color
field. For both Magic3D and Fantasia3D, we use the public imple-
mentation by threestudio [Guo et al. 2023]. Notice that all these
methods rely on the score distillation sampling which usually takes
more than 30 minutes per generation while our method takes less
than a minute. For a runtime comparison, please refer to Table 1.

Quantitative results. Table 1 reports the CLIP [Radford et al. 2021]
similarity result and the run time of each method. We use the public
implementation of the CLIP similarity metric from Zhengwentai
[2023]. This metric computes the cosine similarity between the text
prompt and images of the final meshes. Our method achieves the
best CLIP similarity while running almost two orders of magnitude
faster.

Perceptual study and qualitative results. We also present a casual
perceptual study comparing our method with the three competing
baselines. We designed 18 questions applied to 41 different partic-
ipants. For each question, we present to the participant an input

Table 2. User study results. Our method was selected as the favorite for
the majority of users in all evaluated setups.

Comparison Preference

Ours vs. Magic3D
• Better geometric details 96.35%
• Better visual quality 100.00%
• More consistent with input text 98.80%

Ours vs. Latent-NeRF
• Better geometric details 89.05%
• Better visual quality 93.90%
• More consistent with input text 76.80%

Ours vs. Fantasia3D
• Better geometric details 84.15%
• Better visual quality 65.85%
• More consistent with input text 69.50%

>_: A cat statue

Input 3D mesh Wonder3D Ours

Fig. 6. Multi-view control. Our method is capable of generating details
using the full initial shape as guidance. Notice how the back legs of the
cat and its tail follow the input coarse mesh (in green). On the other hand,
Wonder3D results yield reasonable renditions when visualized from the
initial viewpoint 𝜃𝑠 (top row) but clearly fail to follow the coarse geometric
guidance when seen from other views (bottom row).

coarse mesh, a text prompt, a mesh refined by our method and a
mesh refined by one of the three baseline methods.We ask the partic-
ipant to select the mesh that has better geometric details, has better
visual quality, and is more consistent with the input text prompt.
Based on the results, we compute the preference, i.e., the percentage
of participants who prefer the mesh refined by our method. Table 2
reports the study results. Figure 5 shows the qualitative results of
each method. More visual results are provided in Figure 9 and Fig-
ure 10. The perceptual study result indicates that our method is
favored across all dimensions analyzed. Qualitatively, Latent-NeRF
uses a NeRF representation that notoriously has problems gener-
ating surfaces since it is fundamentally a volumetric occupancy
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Fig. 7. Ablating L∇𝑛 . Adding the L∇𝑛 component during mesh optimiza-
tion allows the final mesh to incorporate more details from the generated
normal images. In this example, notice the ears of the horse and the crisper
details on the bottom of the piece.

representation. While Magic3D also suffers from generating mean-
ingful results. Fantasia3D is based on SDS and generates visually
good results at the expense of a long run time. Our method generates
results that are more consistent with the input 3D mesh structure
than the other methods and is much faster since we only need to
run inference on pre-trained networks. The mesh refinement step
operates directly on the input mesh and converges within seconds.

4.2 Controllability
Control guidance strength. We allow the users to control how

much detail is generated by allowing them to select how many
percentage of the backward diffusion process will use the given
control guidance. As seen in Figure 4, this can happen in both
single-view and multi-view stages. During the single-view stage,
not using R𝑑 [𝑀coarse, 𝜃𝑠 ] means creating an image uncorrelated to
𝑀coarse, not desirable for our application. Using the control guidance
throughout the whole generative process, on the other hand, may
result in an image that follows𝑀coarse too strictly whichmight incur
in artificial shapes like the squirrel to the right in Figure 4. During the
multi-view stage, the guidance will control how many percentage of
the multi-view generation process uses images {R𝑛 [𝑀coarse, 𝜃 ]}𝜃 ∈Θ
as control guidance – when not used at all (0% in the bottom row of
Figure 4), our multi-view generation stage is reduced to Wonder3D.
As the control guidance increases, information from other views
becomes more relevant, but using control guidance 100% of the
denoising steps (100% in the bottom row of Figure 4) yields a final
shape that is very similar to𝑀coarse without too many added details.
We empirically found that values between 30% and 75% strike a
good balance between controllability and detail generation.

Pose control. Our method allows users to provide explicit control
over the pose of the resulting 3D mesh. Figure 12 shows three
examples, each of which has a different pose. Our method generates
3D meshes that have more geometric details and are consistent with
the pose of the input 3D mesh.

4.3 Application
We develop a demo that builds on the Gradio library to provide
users with a user-friendly interface for 3D modeling applications.
See the demo video at https://text-mesh-refinement.github.io.

>_: A cartoon cat head

Input 3D mesh Ours Ours with texture

Fig. 8. Mesh texturing. Our final refined mesh can also be textured.

4.4 Mesh Texturing
While the goal of our method is to add geometric details to input 3D
meshes, our method can also be used to texture a mesh. Since our
method builds on Wonder3D which outputs both multi-view RGB
images and normals, we can use the multi-view RGB predictions to
texture the output 3D mesh. We use the mesh texturing code from
Direct2.5 [Lu et al. 2024]. We refer readers to Lu et al. [2024] for
details about mesh texturing. Figure 8 shows an example.

5 CONCLUSIONS
In this paper, we offer a novel fast method for adding high-quality
geometric details to coarse 3D meshes. Our key design decision is to
rely only on feed-forward networks, generating a single-view RGB
image conditioned on the coarse input mesh, to further use as a
condition for multi-view ControlNet that we train to generate multi-
view consistent normal images. Finally, we can use the resulting
normal images to refine the input coarse geometry in a matter of
seconds, since we only need differentiable rasterization, and do
not rely on propagating gradients via any diffusion networks. We
demonstrate that our method is useful in several scenarios, including
refining low-poly shapes and shapes produced from an arrangement
of simple primitives, and also supports texturing the refined mesh.
In addition to speed and quality, our method offers explicit control
over the pose and the coarse structure of the output, which we
believe is essential for real creative applications.

Limitations and future work. Our method was trained to gen-
erate 6 images of 256 × 256 resolution for the subsequent mesh
refinement. The number of views and the image resolution limit the
level of geometric details our method can generate. In addition, our
mesh refinement algorithm relies on the segmentation quality of an
off-the-shelf image segmentation model. The refinement produces
artifacts when the segmentation is faulty or inconsistent across
different views. Training a model to generate more view-consistent
images with higher resolution, as well as employing more robust im-
age segmentation models, can boost the performance of our method.
There are other interesting topics raised during the development of
our method, such as image-guided mesh refinement, localized detail
generation in selected regions or parts, and identity preservation
when changing the pose of the coarse mesh (see Figure 12), which
we aim to explore in the future.

https://text-mesh-refinement.github.io
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>_: A gorilla

>_: A cat head

>_: A sphinx

>_: A Venus statue

>_: A coyote

Input 3D mesh Latent-NeRF Fantasia3D Magic3D Ours

Fig. 9. Qualitative results. Our method generates 3D meshes that have better geometric details and visual quality compared to state-of-the-art methods.
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>_: A delicious ice cream

>_: A cartoon pig head

>_: Michelangelo statue

Input 3D mesh Latent-NeRF Fantasia3D Magic3D Ours

Fig. 10. Qualitative results. Our method generates 3D meshes that have better geometric details and visual quality compared to state-of-the-art methods.

>_: A cat statue

Input 3D mesh Wonder3D Ours

Fig. 11. Multi-view control. Our method is capable of generating details
using the full initial shape as guidance. On the other hand, Wonder3D results
yield reasonable renditions when visualized from the initial viewpoint 𝜃𝑠 (top
row) but clearly fail to follow the coarse geometric guidance when seen from
other views (bottom row).

>_: A cartoon figure

Input 3D mesh Input 3D mesh Input 3D mesh

>_: A teddy bear >_: A teddy bear

Output 3D mesh Output 3D mesh Output 3D mesh

Fig. 12. Pose control. Our method is capable of generating meshes that
follow the pose of the input mesh.
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